Giant anomalous Hall effect in a ferromagnetic kagome-lattice semimetal (2024)

  • Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).

    Article ADS Google Scholar

  • Fang, Z. et al. The anomalous Hall effect and magnetic monopoles in momentum space. Science 302, 92–95 (2003).

    Article ADS Google Scholar

  • Haldane, F. D. M. Berry curvature on the Fermi surface: Anomalous Hall effect as a topological Fermi-liquid property. Phys. Rev. Lett. 93, 206602 (2004).

    Article ADS Google Scholar

  • Xiao, D., Chang, M. C. & Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959–2007 (2010).

    Article ADS MathSciNet Google Scholar

  • Nakatsuji, S., Kiyohara, N. & Higo, T. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature 527, 212–215 (2015).

    Article ADS Google Scholar

  • Weng, H. M., Fang, C., Fang, Z., Bernevig, B. A. & Dai, X. Weyl semimetal phase in noncentrosymmetric transition-metal monophosphides. Phys. Rev. X 5, 011029 (2015).

    Google Scholar

  • Yan, B. & Felser, C. Topological materials: Weyl semimetals. Annu. Rev. Condens. Matter Phys. 8, 337–354 (2017).

    Article ADS Google Scholar

  • Weng, H. M., Yu, R., Hu, X., Dai, X. & Fang, Z. Quantum anomalous Hall effect and related topological electronic states. Adv. Phys. 64, 227–282 (2015).

    Article ADS Google Scholar

  • Liu, C.-X., Zhang, S.-C. & Qi, X.-L. The quantum anomalous Hall effect: Theory and experiment. Annu. Rev. Condens. Matter Phys. 7, 301–321 (2016).

    Article ADS Google Scholar

  • Yu, R. et al. Quantized anomalous Hall effect in magnetic topological insulators. Science 329, 61–64 (2010).

    Article ADS Google Scholar

  • Chang, C.-Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013).

    Article ADS Google Scholar

  • Fang, C., Gilbert, M. J. & Bernevig, B. A. Large-Chern-number quantum anomalous Hall effect in thin-film topological crystalline insulators. Phys. Rev. Lett. 112, 046801 (2014).

    Article ADS Google Scholar

  • Kou, X. et al. Scale-invariant quantum anomalous Hall effect in magnetic topological insulators beyond the two-dimensional limit. Phys. Rev. Lett. 113, 137201 (2014).

    Article ADS Google Scholar

  • Burkov, A. A. & Balents, L. Weyl semimetal in a topological insulator multilayer. Phys. Rev. Lett. 107, 127205 (2011).

    Article ADS Google Scholar

  • Zyuzin, A. A., Wu, S. & Burkov, A. A. Weyl semimetal with broken time reversal and inversion symmetries. Phys. Rev. B 85, 165110 (2012).

    Article ADS Google Scholar

  • Wang, X., Vanderbilt, D., Yates, J. R. & Souza, I. Fermi-surface calculation of the anomalous Hall conductivity. Phys. Rev. B 76, 195109 (2007).

    Article ADS Google Scholar

  • Burkov, A. A. Anomalous Hall effect in Weyl metals. Phys. Rev. Lett. 113, 187202 (2014).

    Article ADS Google Scholar

  • Wan, X. G., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).

    Article ADS Google Scholar

  • Xu, G., Weng, H. M., Wang, Z. J., Dai, X. & Fang, Z. Chern semimetal and the quantized anomalous Hall effect in HgCr2Se4. Phys. Rev. Lett. 107, 186806 (2011).

    Article ADS Google Scholar

  • Kübler, J. & Felser, C. Weyl points in the ferromagnetic Heusler compound Co2MnAl. Europhys. Lett. 114, 47005 (2016).

    Article ADS Google Scholar

  • Wang, Z. J. et al. Time-reversal-breaking Weyl fermions in magnetic Heusler alloys. Phys. Rev. Lett. 117, 236401 (2016).

    Article ADS Google Scholar

  • Chang, G. Q. et al. Room-temperature magnetic topological Weyl fermion and nodal line semimetal states in half-metallic Heusler Co2TiX (X = Si, Ge, or Sn). Sci. Rep. 6, 38839 (2016).

    Article ADS Google Scholar

  • Suzuki, T. et al. Large anomalous Hall effect in a half-Heusler antiferromagnet. Nat. Phys. 12, 1119–1123 (2016).

    Article Google Scholar

  • Ohgushi, K., Murakami, S. & Nagaosa, N. Spin anisotropy and quantum Hall effect in the kagome lattice: Chiral spin state based on a ferromagnet. Phys. Rev. B 62, R6065–R6068 (2000).

    Article ADS Google Scholar

  • Xu, G., Lian, B. & Zhang, S.-C. Intrinsic quantum anomalous Hall effect in the Kagome lattice Cs2LiMn3F12. Phys. Rev. Lett. 115, 186802 (2015).

    Article ADS Google Scholar

  • Ye, L. et al. Massive Dirac fermions in a ferromagnetic kagome metal. Nature 555, 638–642 (2018).

    Article ADS Google Scholar

  • Weihrich, R., Anusca, I. & Zabel, M. Half-antiperovskites: Structure and type-antitype relations of Shandites M3/2AS (M = Co, Ni; A = In, Sn). Z. Anorg. Allg. Chem. 631, 1463–1470 (2005).

    Article Google Scholar

  • Weihrich, R. & Anusca, I. Half antiperovskites. III - Crystallographic and electronic structure effects in Sn2-xInxCo3S2. Z. Anorg. Allg. Chem. 632, 1531–1537 (2006).

    Article Google Scholar

  • Vaqueiro, P. & Sobany, G. G. A powder neutron diffraction study of the metallic ferromagnet Co3Sn2S2. Solid State Sci. 11, 513–518 (2009).

    Article ADS Google Scholar

  • Schnelle, W. et al. Ferromagnetic ordering and half-metallic state of Sn2Co3S2 with the Shandite-type structure. Phys. Rev. B 88, 144404 (2013).

    Article ADS Google Scholar

  • Dedkov, Y. S., Holder, M., Molodtsov, S. L. & Rosner, H. Electronic structure of shandite Co3Sn2S2. J. Phys. Conf. Ser. 100, 072011 (2008).

    Article Google Scholar

  • Holder, M. et al. Photoemission study of electronic structure of the half-metallic ferromagnet Co3Sn2S2. Phys. Rev. B 79, 205116 (2009).

    Article ADS Google Scholar

  • Ali, M. N. et al. Large, non-saturating magnetoresistance in WTe2. Nature 514, 205–208 (2014).

    Article ADS Google Scholar

  • Kumar, N. et al. Extremely high magnetoresistance and conductivity in the type-II Weyl semimetals WP2 and MoP2. Nat. Commun. 8, 1642 (2017).

    Article ADS Google Scholar

  • Ziman, J. M. Electrons and Phonons: Theory of Transport Phenomena in Solids (Oxford Univ. Press, Oxford, 1960).

  • Xu, Q. et al. Topological surface Fermi arcs in the magnetic Weyl semimetal Co3Sn2S2. Phys. Rev. B 97, 235416 (2018).

    Article ADS Google Scholar

  • Nielsen, H. B. & Ninomiya, M. The Adler–Bell–Jackiw anomaly and Weyl fermions in a crystal. Phys. Lett. B 130, 389–396 (1983).

    Article ADS MathSciNet Google Scholar

  • Son, D. T. & Spivak, B. Z. Chiral anomaly and classical negative magnetoresistance of Weyl metals. Phys. Rev. B 88, 104412 (2013).

    Article ADS Google Scholar

  • Onoda, S., Sugimoto, N. & Nagaosa, N. Intrinsic versus extrinsic anomalous Hall effect in ferromagnets. Phys. Rev. Lett. 97, 126602 (2006).

    Article ADS Google Scholar

  • Miyasato, T. et al. Crossover behavior of the anomalous Hall effect and anomalous Nernst effect in itinerant ferromagnets. Phys. Rev. Lett. 99, 086602 (2007).

    Article ADS Google Scholar

  • Yue, D. & Jin, X. Towards a better understanding of the anomalous Hall effect. J. Phys. Soc. Jpn 86, 011006 (2016).

    Article ADS Google Scholar

  • Gantmakher, V. F. The experimental study of electron–phonon scattering in metals. Rep. Prog. Phys. 37, 317–362 (1974).

    Article ADS Google Scholar

  • Checkelsky, J. G. et al. Trajectory of the anomalous Hall effect towards the quantized state in a ferromagnetic topological insulator. Nat. Phys. 10, 731–736 (2014).

    Article Google Scholar

  • Samarth, N. Quantum materials discovery from a synthesis perspective. Nat. Mater. 16, 1068–1076 (2017).

    Article ADS Google Scholar

  • Chan, C.-K., Lee, P. A., Burch, K. S., Han, J. H. & Ran, Y. When chiral photons meet chiral fermions: Photoinduced anomalous Hall effects in Weyl semimetals. Phys. Rev. Lett. 116, 026805 (2016).

    Article ADS Google Scholar

  • Ikhlas, M. et al. Large anomalous Nernst effect at room temperature in a chiral antiferromagnet. Nat. Phys. 13, 1085–1090 (2017).

    Article Google Scholar

  • Rajamathi, C. R. et al. Weyl semimetals as hydrogen evolution catalysts. Adv. Mater. 29, 1606202 (2017).

    Article Google Scholar

  • Yang, B.-J., Moon, E.-G., Isobe, H., & Nagaosa, N. Quantum criticality of topological phase transitions in three-dimensional interacting electronic systems. Nat. Phys. 10, 774–778 (2014).

    Article Google Scholar

  • Kurebayashi, D. & Nomura, K. Voltage-driven magnetization switching and spin pumping in Weyl semimetals. Phys. Rev. Appl. 6, 044013 (2016).

    Article ADS Google Scholar

  • Tokura, Y., Kawasaki, M. & Nagaosa, N. Emergent functions of quantum materials. Nat. Phys. 13, 1056–1068 (2017).

    Article Google Scholar

  • Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article ADS Google Scholar

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article ADS Google Scholar

  • Mostofi, A. A. et al. wannier90: A tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 178, 685–699 (2008).

    Article ADS Google Scholar

  • Giant anomalous Hall effect in a ferromagnetic kagome-lattice semimetal (2024)

    FAQs

    Giant anomalous Hall effect in a ferromagnetic kagome-lattice semimetal? ›

    The electronic anomalous Hall effect (AHE), where charge carriers acquire a velocity component orthogonal to an applied electric field without an external magnetic field, is one of the most fundamental and widely studied phenomena in physics.

    What is the anomalous Hall effect? ›

    The anomalous Hall effect stems from the fact that, when a current passes through a magnetic material, electrons are predominantly deflected in one direction. This results in an additional current perpendicular to the driving current, which vanishes if the material is non-magnetic.

    What is Hall effect in ferromagnetic materials? ›

    Both the unusually large magnitude and strong temperature dependence of the extraordinary Hall effect in ferromagnetic materials can be understood as effects of the spin-orbit interaction of polarized conduction electrons.

    What is the spin hall effect in ferromagnets? ›

    Unlike the spin filtering effect in ferromagnets, where the charge current and spin flow are in the same direction, the spin Hall effect generates spin currents such that their spin flow and spin direction are orthogonal to each other and to the charge current direction.

    What is the anomalous Planar Hall effect? ›

    Recently, the planar Hall effect has attracted tremendous interest. In particular, an in-plane magnetization can induce an anomalous planar Hall effect with a 2 ⁢ 𝜋 / 3 period for hexagon-warped energy bands. This effect is similar to the anomalous Hall effect resulting from an out-of-plane magnetization.

    References

    Top Articles
    Latest Posts
    Article information

    Author: Maia Crooks Jr

    Last Updated:

    Views: 6627

    Rating: 4.2 / 5 (43 voted)

    Reviews: 90% of readers found this page helpful

    Author information

    Name: Maia Crooks Jr

    Birthday: 1997-09-21

    Address: 93119 Joseph Street, Peggyfurt, NC 11582

    Phone: +2983088926881

    Job: Principal Design Liaison

    Hobby: Web surfing, Skiing, role-playing games, Sketching, Polo, Sewing, Genealogy

    Introduction: My name is Maia Crooks Jr, I am a homely, joyous, shiny, successful, hilarious, thoughtful, joyous person who loves writing and wants to share my knowledge and understanding with you.